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These notes are mostly based on Chapters 4, 10, and 12 from [EFHN15], rearrang-
ing for clarity, filling in some gaps, and choosing some slightly different presentations
and proofs of results for brevity.

1 Motivation: Inducing measurable dynamics from

topological dynamics

In the field of dynamical systems, the idea is to study a space X with some “dy-
namics” occurring on it, represented by repeated action of some map T . This setup
takes a few forms, including but not limited to the following:

Definition 1.1. A topological dynamical system is a pair (X,T ), where X is a
(nonempty) compact, Hausdorff topological space and T : X → X is continuous.

Definition 1.2. A measure-preserving system is a tuple (X,B, µ, T ), where
(X,B, µ) is a probability space (i.e. a measure space with µ(X) = 1) and T : X → X
is measure-preserving: µ(T−1E) = µ(E) for all E ∈ B.

We can express the measure-preserving property as T∗µ = µ, where T∗µ denotes
the push-forward measure.

Recall the Krylov-Bogoliubov theorem, which tells us that topological dynamical
systems naturally give rise to measure-preserving systems:

Theorem 1.1 (Krylov-Bogoliubov). Let X be a compact metric space and T : X →
X be a continuous map. Then there exists a measure µ such that T∗µ = µ.

Thus, given a TDS (X,T ), we get (possibly many) MPSs (X,BX , µ, T ), where
BX is the Borel σ-algebra on X. Here is a proof (which cites a few high-powered
results1):

Proof. Let x ∈ X, and consider the point-mass measure δx. Then T∗δx = δTx, T
2
∗ δx =

δT 2x, and so on. So consider the average measures µn = 1
n

∑n−1
k=0 δTkx. These form

a sequence of probability measures in the unit ball of M(X), the space of measures
on X, so we need to justify their convergence.

By the Riesz-Markov-Kakutani representation theorem, the space of measures is
the dual space of C(X), and moreover, by the Banach-Alaoglu theorem, the unit
ball of this space is compact in the weak* topology (the topology of convergence
in distribution). The set of probability measures is a closed and hence compact

1For proofs, see [Fol13] or my pillowmath Math 245B notes.

2



subset. The weak* topology is metrizable, so the collection of probability measures
is sequentially compact. Thus, there exists a convergent subsequence of the µn. Let
µ be the limit of such a subsequence.

We claim that µ is T -invariant. It suffices to show that
∫
X
f dT∗µ =

∫
X
f dµ for

all f ∈ C(X). We do this by comparing µ to µn:∣∣∣∣∫
X

f ◦ T dµ−
∫
X

f dµ

∣∣∣∣ ≤ ∣∣∣∣∫
X

f ◦ T dµ−
∫
X

f ◦ T dµn
∣∣∣∣+

∣∣∣∣∫
X

f ◦ T dµn −
∫
X

f dµn

∣∣∣∣
+

∣∣∣∣∫
X

f dµn −
∫
X

f dµ

∣∣∣∣
The middle term is |

∫
f dT∗µn −

∫
f dµn|. Since

∫
f dµn =

∑n−1
k=0 f(T kx), this term

telescopes:

=

∣∣∣∣∫
X

f ◦ T dµ−
∫
X

f ◦ T dµn
∣∣∣∣+

1

n

∣∣f(x)− f(T n−1x)
∣∣

+

∣∣∣∣∫
X

f dµn −
∫
X

f dµ

∣∣∣∣
By the definition of weak*-convergence, the first and last terms go to 0 as n → ∞.
The middle term is bounded by 2

n
‖f‖u, so

n→∞−−−→ 0.

So T∗µ = µ, as claimed.

The theory of topological models allows us to answer the question: Can we go
backwards? Is every measure-preserving system actually derived from some topo-
logical dynamical system? In a vague philosophical sense, we are asking if whether
every probabilistic system can be modeled spatially.

Amazingly, the answer is actually “yes, sort of”! We will prove the following:

Theorem 1.2. Every abstract measure-preserving system is isomorphic to a topo-
logical measure-preserving system.

There will be a few technicalities, including what “isomorphic” means, but for
standard probability spaces, everything will work out in the nicest possible way.
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2 Properties of C(X)

To compare a compact space X to a measure-preserving system, we will first show
that all of the information contained in X is still present in C(X). This will allow
us to use functional analytic methods to compare function spaces of X and a MPS.

2.1 Separability of C(X)

Recall the following fact about compact metric spaces:

Lemma 2.1. Every compact metric space X is separable.

Proof. Fix n ∈ N+, and consider the collection of open balls B(x, 1/n) with x ∈
X. Then {B(x, 1/n)}x forms an open cover of X, and compactness yields a finite
subcover B(x1, 1/n), . . . , B(xrn , 1/n). Let Cn = {x1, . . . , xrn}. Then C :=

⋃∞
n=1Cn

is countable and dense in X.

This separability extends to the Banach space C(X), but the relationship between
X and C(X) is actually deeper than this. It turns out that C(X) determines X up
to homeomorphism, so we can obtain a lot of information about X from C(X). In
particular, the following is true regarding the separability of C(X):

Theorem 2.1. Let X be a compact, Hausdorff topological space. Then C(X) is
separable if and only if X is metrizable.

Proof. (⇐= ): Without loss of generality, we may assume that X is a metric space,
since if φ : X → Y is a homeomorphism with Y a metric space, then Φ : C(Y ) →
C(X) sending f 7→ f ◦ φ is a homeomorphism. X is separable, so let A ⊆ X be a
countable dense subset; the idea is that we can approximate any continuous function
using distance functions d(·, x) and hence by using d(·, x) with x ∈ A. In particular,
let

D = {d(·, x) ∈ C(K) : x ∈ A} ∪ {1X},

where 1X is the constant 1 function. Then D, the set of all finite products of ele-
ments in spanQ(D), is a countable subalgebra of C(X), and D contains the constant

functions, so D = C(X) by the Stone-Weierstrass theorem.
( =⇒ ): Suppose C(X) is separable. We will construct a metric space homeo-

morphic to X. Let {f0, f1, f2, . . . } be a countable dense subset of X, and define the
function

ϕ : X →
∏
n∈N

C, ϕ(x) = (f0(x), f1(x), . . . ).
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Equipping the latter space with the metric d((zn)n, (wn)n) =
∑∞

n=0
1
2n
· |zn−wn|
1+|zn−wn| , we

claim that ϕ is a homeomorphism between X and ϕ(X). Observe that

• ϕ is continuous2: If xk → x, then fn(xk) → fn(x) for each n ∈ N by the
continuity of the fn. So

d(ϕ(xk), ϕ(x)) =
∞∑
n=0

1

2n
· |fn(xk)− fn(x)|

1 + |fn(xk)− fn(x)|
k→∞−−−→ 0

(by the dominated convergence theorem). That is, ϕ(xk)→ ϕ(x).

• ϕ is injective: Suppose x 6= y. Then, since X is Hausdorff, {x} and {y} are
closed. By Urysohn’s lemma, there exists a continuous function f : X → [0, 1]
with f(x) = 0 and f(y) = 1. By the density of {f0, f1, f2, . . . } in C(X), let
k ∈ N be such that ‖fk − f‖u < 1/2. Then fk(x) < 1/2 and fk(y) > 1/2, so
fk(x) 6= fk(y). Thus, ϕ(x) 6= ϕ(y).

ϕ is a continuous injection from a compact space to a Hausdorff space, so its inverse
ϕ−1 : ϕ(X)→ X is automatically continuous.

2.2 C*-algebra structure of C(X)

C(X) does not just have the structure of a vector space. It has two other important
structures: multiplication and complex conjugation.

Definition 2.1. A Banach algebra is a Banach space B, equipped with a contin-
uous “multiplication” map B ×B → B such that ‖xy‖ ≤ ‖x‖‖y‖ for all x, y ∈ B.

Definition 2.2. A C*-algebra is a Banach algebra A along with an map ∗ : A→ A
such that for all x, y ∈ A,

1. (Involution) (x∗)∗ = x,

2. (Distributivity) (x+ y)∗ = x∗ + y∗, (xy)∗ = y∗x∗,

3. (Conjugation of scalars) (λx)∗ = λx∗ for λ ∈ C.

4. (C*-algebra axiom) ‖xx∗‖ = ‖x‖2.
2In non-metrizable topologies, continuity is characterized by convergence of nets, rather than

convergence of sequences. Our target spaces are always metrizable, so we will just check convergence
of sequences (which are the images of nets coming from the domain).
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Example 2.1. Let H be a Hilbert space, and let L(H,H) be the collection of
bounded linear operators from H to H. Then L(H,H) is a C*-algebra when equipped
with the operator norm and the map ∗ sending an operator to its adjoint.

We will only use commutative C*-algebras, so the following two examples will be
especially important.

Example 2.2. If X is a compact, Hausdorff space, C(X) is a C*-algebra when
equipped with the involution f 7→ f .

Example 2.3. Let (X,B, µ) be a measure space. Then L∞(X) is a C*-algebra when
equipped with the involution f 7→ f .

2.3 Characterization of maximal ideals and homomorphisms

To understand the space C(X), we will look at its maximal ideals, i.e. the maximal
proper subspaces I with fg ∈ I for any f ∈ C(X) and g ∈ I.

Proposition 2.1. Let X be a compact, Hausdorff space. The closed ideals I of C(X)
are precisely the sets of the form IF := {f ∈ C(X) : f = 0 on F}, where F ⊆ X is
closed.

Here is a proof sketch. For the whole proof, see Section 4.2 of [EFHN15].

Proof. First, to check that IF is a (closed) ideal, note that IF = ker(resF ), where
restriction to F , resF : C(X)→ C(F ), is an algebra homomorphism.

Conversely, given I, define F := {x ∈ X : f(x) = 0 ∀f ∈ I}. The set F is closed,
as F =

⋂
f∈I f

−1({0}), an intersection of closed sets. This construction gives I ⊆ IF ,
and an approximation argument gives the reverse containment.

Corollary 2.1. Let X be a compact, Hausdorff space. The maximal ideals of C(X)
are I{x} for x ∈ X.

Proof. To check that each I{x} is maximal, let J ⊇ I{x} be a proper ideal of C(X).
Then J is an ideal which is not all of C(X) because the set of invertible elements of
C(X) is open. By the proposition, J = IF for some closed set F ⊆ X. But since
IF ⊇ I{x} iff F ⊆ {x}, we get I{x} = J = J .

Conversely, suppose that I is a maximal (proper) ideal of C(X). Then I is a
closed ideal of C(X) which is not all of C(X) because the set of invertible elements
of C(X) is open. So I = I = IF for some closed F ⊆ X, and maximality implies
that F is a singleton.
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What we have shown is that by looking at the maximal ideals of C(X), we can
recover all the points in the space X. It now remains to show that we can recover
the topological structure of X. To do this, we will step away from the maximal ideal
characterization of the points and instead think of them as point-mass measures.

Let δx denote the point-mass probability measure at x ∈ X. We can think of δx
as a linear functional on C(X), namely via δx(f) = f(x). Moreover, observe that
I{x} = ker δx. So instead of relating points in X to maximal ideals, we will relate
them to particular linear functionals on C(X), which have a topology. In particular,
we will relate them to algebra homomorphisms C(X)→ C, i.e. linear functionals
satisfying ψ(fg) = ψ(f)ψ(g) and ψ(1X) = 1.

Lemma 2.2. Let X be a compact, Hausdorff space. A linear functional ψ : C(X)→
C is an algebra homomorphism if and only if ψ = δx for some x ∈ X.

Proof. First, observe that δx is multiplicative with δx(1X) = 1. Conversely, suppose
ψ is an algebra homomorphism. Then kerψ is an ideal of C(X), and it is maximal
because dimC(X)/ kerψ = dim imψ = 1. Thus, kerψ = I{x} for some x ∈ X. Now,
for any f ∈ C(X), f − ψ(f)1X ∈ kerψ = I{x}, so

0 = f(x)− ψ(f)1X(x) = f(x)− ψ(f).

Thus, ψ(f) = f(x) = δx(f) for all f ∈ C(X).

2.4 The Gelfand-Naimark theorem

This gives us our characterization of X from C(X).

Theorem 2.2. Let X be a compact, Hausdorff space, and let the Gelfand space
of C(X) be

Γ(C(X)) := {ψ ∈ C(X)∗ : ψ is an algebra homomorphism}.

Then the map δ : X → Γ(C(X)) sending x 7→ δx is a homeomorphism, where
Γ(C(K)) has the weak* topology inherited from C(X)∗.

Proof. By the lemma, the map δ is surjective. The map δ is injective, as if x 6= y,
then since X is Hausdorff, {x} and {y} are closed. By Urysohn’s lemma, there exists
a continuous function f : X → [0, 1] with f(x) = 0 and f(y) = 1, which shows
δx(f) = f(x) 6= f(y) 6= δy(f). To show that the map is continuous, suppose xn → x.
To show that δxn → δx in the weak* topology, we test these against any continuous
function f :

δxn(f) = f(xn)
n→∞−−−→ f(x) = δx(f),
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by the continuity of f . Finally, since δ is a continuous bijection from a compact
space to a Hausdorff space, its inverse is automatically continuous.

Remark 2.1. At first glance, you might think that this whole process of character-
izing maximal ideals and algebra homomorphisms was a total waste of time, since
the map x 7→ δx can be defined without knowing these things. If you look care-
fully at the proof, the only use of these characterizations came in play to show that
the map δ was surjective, so it seems like we could have bypassed all this work by
just concluding that X is homeomorphic to δ(X). However, this is not sufficient for
our purposes because δ(X) needs to be characterized intrinsically via C(X) without
knowledge of the space X. Otherwise, we would not be able to show that C(X)
determines X, as we want.

Corollary 2.2. Let X, Y be compact Hausdorff spaces. Then X, Y are homeomor-
phic if and only if the algebras C(X), C(Y ) are isomorphic.

Proof. ( =⇒ ): If φ : X → Y is a homeomorphism, then Φ : C(Y )→ C(X) sending
f 7→ f ◦ φ is an algebra isomorphism.

(⇐= ): If C(X) ∼= C(Y ) as algebras, then Γ(C(X)) is homeomorphic to Γ(C(Y )).
By the theorem, X is homeomorphic to Y .

The Gelfand map Γ plays a very important role in the theory of all commutative
C*-algebras, not just C(X). The following theorem will be instrumental in our proof
of the existence of topological models.

Theorem 2.3 (Gelfand-Naimark). Let A be a commutative C*-algebra. Then there
is a compact, Hausdorff space X and an isometric isomorphism Φ : A→ C(X) that
commutes with ∗. The space X is unique up to homeomorphism.3

We will not prove this, but the construction is to set X = Γ(A), the set of linear
functionals which are algebra homomorphisms. For the full proof, see Chapter 4 of
[EFHN15], [Dix82], or my pillowmath Math 259A notes.

Remark 2.2. This may be surprising, given that L∞ of a measure space is a C*-
algebra. You can reassure yourself with the notion that if C(X) ∼= L∞(Y ) as C*-
algebras, then X may not look too similar to Y . We will later see what the compact
space X may look like.

3The Gelfand-Naimark is a bit stronger than this, actually. In full generality, it asserts a duality
of categories between compact Hausdorff spaces and C*-algebras.
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3 Studying dynamics via Koopman operators

The purpose of this section is to show that instead of the studying the topological
or measure-preserving systems themselves, it is sufficient to study their Koopman
operators.

3.1 Koopman operators for topological dynamical systems

We can study a topological dynamical system (X,T ) by looking at the action of T
on continuous functions by pre-composition:

Definition 3.1. Let (X,T ) be a topological dynamical system. The Koopman
operator is the operator UT : C(X)→ C(X) sending f 7→ f ◦ T .

The following theorem tells us that if we can find an operator which looks like the
Koopman operator, we can recover the dynamics on the space X. The key property
is that UT is an algebra homomorphism, a linear map with UT (fg) = UT (f)UT (g)
and UT (1X) = 1X .

Theorem 3.1. Let X be a compact, Hausdorff space, and let U : C(X)→ C(X) be
an algebra homomorphism. Then there exists a unique T ∈ C(X) such that U = UT ,
i.e. U(f) = f ◦ T for all f ∈ C(X).

The first step is proving that if we can find such a T , then it will be continuous.

Lemma 3.1. Let X be a compact, Hausdorff space. T : X → X is continuous if
and only if f ◦ T is continuous for all f ∈ C(X).

Let’s prove the lemma.

Proof. If T is continuous, then f ◦ T is continuous for f ∈ C(X) as compositions of
continuous functions are continuous. Conversely, suppose f ◦ T is continuous for all
f ∈ C(X). We want to show that T−1(V ) is open for all open V ⊆ X, and we have
that T−1(f−1(W )) = (f ◦ T )−1(W ) is open for each f ∈ C(X) and open W ⊆ C. So
it suffices to show that every open V ⊆ X can be expressed as a union of f−1(W )
for open W ⊆ X.

For a nonempty open V ( X, let x ∈ V . Then, as X is Hausdorff, {x} is closed,
so by Urysohn’s lemma, there exists an fx ∈ C(X) such that fx(x) = 0 and fx(y) = 1
for all y ∈ X \ V . Thus, f−1x (C \ {1}) is an open set containing x which is contained
in V , and we thus have V =

⋃
x∈V f

−1
x (C \ {1}).

Now we can prove the theorem:
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Proof. Consider the adjoint map U∗ : C(X)∗ → C(X)∗, which satisfies [U∗F ](f) =
F (Uf) for each f ∈ C(X) and F ∈ C(X)∗. Then, letting δx be the point-mass
measure at x ∈ X, viewed as the linear functional δx(f) = f(x), observe that
U∗(δx) : C(X)→ C is an algebra homomorphism:

[U∗(δx)](fg) = δx(U(fg)) = δx(UfUg) = δx(Uf)δx(Ug) = [U∗(δx)](f) · [U∗(δx)](g),

[U∗(δx)](1X) = δx(U1X) = δx(1X) = 1.

By our previous characterization of algebra homomorphisms C(X) → C, there is a
unique y =: T (x) such that U∗(δx) = δT (x). Thus,

[Uf ](x) = δx(Uf) = [U∗(δx)](f) = δT (x)(f) = f(T (x)),

yielding Uf = f ◦ T . By the lemma, T is continuous, so we are done.

3.2 Replacing measure-preserving systems by their Koop-
man operators

Similarly to the topological case, a measure-preserving system (X,B, µ, T ) also has
an associated Koopman operator:

Definition 3.2. Let (X,B, µ, T ) be a measure-preserving system. The Koopman
operator is the operator UT : L1(X)→ L1(X) sending f 7→ f ◦ T .

To use functional analytic techniques to compare measure-preserving systems,
we will be comparing their Koopman operators. Just as algebra homomorphisms
C(X)→ C(X) correspond to Koopman operators for topological dynamical systems,
Koopman operators have an analogue in the L1(X) setting.

Definition 3.3. Let (X,BX , µ) and (Y,BY , ν) be measure spaces. An operator
U : L1(Y )→ L1(X) is called a Markov embedding if

(i) (Positivity) Uf ≥ 0 when f ≥ 0,

(ii) (Preserves identity) U1Y = 1X ,

(iii) (Preserves integration)
∫
X
Uf dµ =

∫
Y
f dν for all f ∈ L1(Y ),

(iv) (Embedding condition4) |Uf | = U |f | for all f ∈ L1(Y ).

4If we remove the embedding condition, we get a Markov operator.
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In the case X = Y , the pair (X,U) is called an abstract measure-preserving
system.

Remark 3.1. The positivity condition implies that U preserves order: If f ≥ g
pointwise, then f − g ≥ 0, so U(f − g) ≥ 0. The linearity of U then gives Uf ≥ Ug.

Observe that a Koopman operator UT : L1(X)→ L1(X) is a Markov embedding,
so every measure-preserving system gives rise to an abstract measure-preserving sys-
tem.

You may be wondering why this definition allows for a different domain and
codomain. This is because Markov embeddings describe both Koopman operators
and the maps that relate Koopman operators to each other. First, recall how we
usually compare measure-preserving systems:

Definition 3.4. Let (X,BX , µ, T ) and (Y,BY , ν, S) be measure-preserving systems.
A factor map is a measurable map φ : X → Y satisfying the following (replacing
X and Y by full measure subsets X ′ ⊆ X and Y ′ ⊆ Y , respectively, if needed):

(i) φ is measure preserving: µ(φ−1A) = ν(A) (or equivalently, φ∗µ = ν).

(ii) φ converts the dynamics of X into the dynamics of Y : φ ◦ T (x) = S ◦ φ(x) for
every x ∈ X.

X X

Y Y

T

φ φ

S

Note that if we replace X with X ′ and Y with Y ′, then we still need TX ′ ⊆ X ′ and
SY ′ ⊆ Y ′ for the dynamics to make sense.

Here are the Markov operators that act as factor maps to compare Koopman
operators:

Definition 3.5. Let U : L1(X) → L1(X) and V : L1(Y ) → L1(Y ) be Markov
operators. A Markov embedding Φ : L1(Y )→ L1(X) is intertwining for U and V
if Φ ◦ V = U ◦ Φ.

Definition 3.6. A Markov isomorphism is a surjective (and hence invertible)
Markov embedding. Two abstract measure-preserving systems (X,U), (Y, V ) are
isomorphic if there exists an intertwining Markov isomorphism Φ : L1(Y )→ L1(X).
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Proposition 3.1. Let (X,BX , µ, T ) and (Y,BY , ν, S) be isomorphic as measure-
preserving systems. Then the abstract measure-preserving systems (X,UT ), (Y, US)
are isomorphic.

Proof. Let φ : X → Y be an isomorphism, and define Φ : L1(Y ) → L1(X) by
Φf = f ◦ φ. Then Φ is an intertwining Markov embedding, and it is invertible via
Φ−1 sending g 7→ g ◦ φ−1.

Unfortunately, we come now to the main caveat of our theory: The correspon-
dence does not always go the other way. The Koopman operator UT : L1(X) →
L1(X) gives us information about how T acts on sets in BX because BX/ ∼⊆ L1(X),
where A ∈ BX is identified 1A ∈ L1(X) and A ∼ B iff µ(A4B) = 0.5 Indeed
an isomorphism of abstract measure-preserving systems induces an isomorphism of
BX/ ∼.6 But, as the following example shows, if the σ-algebras involved are not rich
enough to give good resolution of measurable subsets of our space, we may not get
isomorphism of the underlying measure-preserving systems.

Example 3.1. Let X = {0}, BX = {∅, X}, µ(X) = 1, and T = idX , and let
Y = {0, 1}, BY = {∅, Y }, ν(Y ) = 1, and S = idY . These are not isomorphic as
measure-preserving systems, but L1(X) and L1(Y ) are the constant functions on X
and Y , respectively, so (X,UT ), (Y, US) are isomorphic via the intertwining Markov
isomorphism c1Y 7→ c1X .

For nice spaces, these notions agree!

Theorem 3.2. Let (X,BX , µ), (Y,BY , ν) be standard probability spaces. An iso-
morphism on (X,UT ) and (Y, US) induces an a.e.-uniquely determined isomorphism
beween X and Y as measure-preserving systems.

Lemma 3.2 (von Neumann). Let (X,BX , µ), (Y,BY , ν) be standard probability spaces,
and let U : L1(Y ) → L1(X) be a Markov embedding. Then there is a µ-almost ev-
erywhere unique measure-preserving map f : X → Y such that U = Uf (i.e. U sends
g 7→ g ◦ f).

We omit the proof of the lemma. For the proof (which is not so long), see
Appendix F of [EFHN15].

5The structure BX/ ∼ is sometimes referred to as the measure algebra of the measure-
preserving system.

6For a proof of this, see Theorem 12.10 of [EFHN15].
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Proof. Using the lemma with U, V , we get measure-preserving maps T : X → X and
S : Y → Y with U = UT and V = US. Using the lemma with an intertwining Markov
isomorphism Φ : L1(Y ) → L1(X), we get measure-preserving maps φ : X → Y and
φ−1 : Y → X with Φ = Uφ and Φ−1 = Uφ−1 . To show these are actually (measurable)
inverses, observe that

Uφ−1◦φ = Uφ ◦ Uφ−1 = Φ ◦ Φ−1 = idL(Y ) = UidY ,

so uniqueness in the lemma gives φ−1 ◦φ = idY ν-a.e. The same argument applies to
φ ◦ φ−1. To show that these are µ-a.e. intertwining, we use the same argument with

Uφ◦T = UT ◦ Uφ = U ◦ Φ = Φ ◦ V = Uφ ◦ US = US◦φ

and apply the a.e. uniqueness once more.

Our construction of topological models will apply to abstract measure-preserving
systems and use this looser notion of isomorphism, so it may not completely sat-
isfy your philosophical broodings about the nature of measure-preserving systems.
However, often in applications, dealing with the Koopman operator of a measure-
preserving system (and more generally Markov operators) is enough to understand
the systems at play, so we cheerfully sweep this philosophical discrepancy under the
rug.7

3.3 Properties of Markov embeddings

For our proof, we will need to understand Markov embeddings a bit better, so we’ll
prove a few properties here.

Lemma 3.3. If U : L1(Y ) → L1(X) is a Markov embedding, then U1A is an indi-
cator which we denote by 1UA. Moreover, U(A ∪ B) = UA ∪ UB and U(A ∩ B) =
UA ∩ UB.

Proof. For the first claim, it suffices to show that U1A takes values in {0, 1}. The
embedding property gives∣∣∣∣U1A − 1

2

∣∣∣∣ =

∣∣∣∣U (1A − 1

2
1Y

)∣∣∣∣ = U

∣∣∣∣1A − 1

2
1Y

∣∣∣∣ = U

(
1

2
1Y

)
=

1

2
1X ,

so U1A is always distance 1/2 from 1/2.

7The real answer is “topological models are cool,” so we’ll study them regardless of what philo-
sophical questions they answer.

13



For the union property, the embedding property gives

U1A∪B = U max{1A,1B}

= U

(
1A + 1B + |1A − 1B|

2

)
=
1UA + 1UB + |1UA − 1UB|

2
= max{1UA,1UB}
= 1UA∪UB.

For the intersection property, we can use

U1A∩B = U min{1A,1B}
= U(1A + 1B −max{1A,1B})
= 1UA + 1UB −max{1UA,1UB}
= min{1UA,1UB}
= 1UA∩UB.

Remark 3.2. This property can be extended to show that U induces a homomor-
phism on BX/ ∼ and BY / ∼, but we will not show that here.

Proposition 3.2. If U : L1(X) → L1(X) is a Markov embedding, it is an algebra
homomorphism when restricted to L∞.

Proof. Since U is linear and preserves the identity, we need only prove that it pre-
serves multiplication of f, g ∈ L∞. By linearity, it also suffices to prove this when
f, g are real-valued. First, we can show this when f = g: Let φj =

∑nj

i=1 ci,j1Ai,j

be an L1 approximation to f by simple functions (with indicators on disjoint sets).
Then

Uφ2
j = U

nj∑
i=1

c2i.j1Ai,j
=

nj∑
i=1

c2i.j1UAi,j
= (Uφj)

2,

So

‖(Uf)2 − Uf 2‖1 ≤ ‖(Uf)2 − (Uφj)
2‖1 + ‖(Uφj)2 − Uφ2

j‖1 + ‖Uφ2
j − Uf 2‖1

≤ ‖Uf + Uφj‖∞‖U(f − φj)‖1 + ‖φ2
j − f 2‖1

= ‖Uf + Uφj‖∞‖f − φj‖1 + ‖φj + f‖∞‖φj − f‖1
For large enough j,

≤ (2‖Uf‖∞ + 1)‖(f − φj)‖1 + (2‖f‖∞ + 1)‖φj − f‖1

14



j→∞−−−→ 0.

We now apply Uf 2 = (Uf)2 to the polarization identity 2fg = (f + g)2 − f 2 − g2 to
get

U(fg) =
1

2
U((f + g)2 − f 2 − g2) =

1

2

(
(Uf + Ug))2 − (Uf)2 − (Ug)2

)
= (Uf)(Ug),

which completes the proof.
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4 Topological models

4.1 Construction of topological models

We are now prepared to construct topological models.

Definition 4.1. Let (X,U) be an abstract measure-preserving system. A topo-
logical model of X is a measure-preserving system (K,B, ν, T ) such that K is a
compact, Hausdorff space, T : K → K is continuous, and there is an intertwining
Markov isomorphism

Φ : (K,UT )→ (X,U).

Theorem 4.1. Every abstract measure-preserving system admits at least one topo-
logical model.

Remark 4.1. Topological models are not in general unique. The proof will actually
produce machinery to construct topological models using U-invariant C*-subalgebras
of L∞(X) (which are dense in L1(X)). Different subalgebras may result in different
topological models, which may have different properties such as ergodicity.

Proof. Let (X,U) be an abstract measure-preserving system, and let A be a U -
invariant C*-subalgebra of L∞(X) which is dense in L1(X) (for example, we could
take A = L∞(X) itself).8 By the Gelfand-Naimark theorem, there exist a compact,
Hausdorff space K and a C*-algebra isomorphism Φ : C(K)→ A.

Having constructed the space K, we now construct the probability measure on K.
Consider the linear functional L : C(K)→ C sending f 7→

∫
X

Φf dµ. L is bounded,
as ‖L‖ ≤ 1, so by the Riesz-Markov-Kakutani representation theorem, there exists a
measure ν on K such that

∫
K
f dν =

∫
X

Φf dµ for all f ∈ C(X). To check that ν is a
positive measure, note that

∫
K
f dν =

∫
X

Φf dµ ≥ 0 whenever f ≥ 0; approximating
an indicator by nonnegative continuous functions in L1, we get ν(E) =

∫
K
1E, dν ≥ 0

for all measurable E ⊆ K. Moreover,

ν(K) =

∫
K

1K dν =

∫
X

Φ1K dµ =

∫
X

1X dµ = µ(X) = 1,

so ν is a probability measure.
We now upgrade the C*-algebra isomorphism Φ into the desired intertwining

Markov isomorphism. To extend Φ to all of L1(K), we will first show that it is an
isometry in the L1 norm. Using the properties of Φ as an algebra homomorphism,

(Φ|f |)2 = Φ|f |2 = Φ(ff) = (Φf)(Φf) = (Φf)(Φf) = |Φf |2,
8A C*-subalgebra is by definition closed in the norm topology of L∞(X).
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which gives Φ|f | = |Φf |. Thus, Φ is an isometry:

‖Φf‖L1(X) =

∫
X

|Φf | dµ =

∫
X

Φ|f | dµ =

∫
K

|f | dν = ‖f‖L1(K).

So Φ extends uniquely to an isometry L1(K) → L1(X) by defining Φ(lim fn) =
lim Φfn, where the limits are in the L1 sense. Moreover, Φ is a Markov isomorphism:

(i) (Embedding condition) For f ∈ C(K), we already have |Φf | = Φ|f |. The
property extends to all f ∈ L1(K) by approximation, due to the continuity of
Φ and | · |.

(ii) (Positivity) If f ≥ 0, then |Φf | = Φ|f | = Φf , so Φf ≥ 0.

(iii) (Preserves identity) This follows from the algebra homomorphism property.

(iv) (Preserves integration)
∫
X

Φf dµ =
∫
K
f dν for all f ∈ C(K) by the definition

of ν, and this equality extends to all f ∈ L1(K) by approximation.

(v) (Surjective): Since Φ is an isometry, it is an open map. Thus, the range of Φ
is closed in L1(X), and since A is dense in L1(X), Φ is surjective.

We now construct the dynamics on K. Consider the map Φ−1UΦ : C(K) →
C(K). This is an algebra homomorphism, as Φ, Φ−1, and U are. So there exists a
unique continuous T : K → K such that UT = Φ−1UΦ. This implies Φ◦UT = U ◦Φ,
so Φ is intertwining. Finally, ν is T -preserving, as∫

K

f ◦ T dν =

∫
K

Φ−1UΦf dν =

∫
X

UΦf dµ =

∫
X

Φf dµ =

∫
K

f dν

for all f ∈ C(K).

4.2 General properties of topological models

Now that we have constructed topological models from abstract measure-preserving
systems, let’s endeavor to understand these topological models better.

4.2.1 Faithfulness, surjectivity, and minimality

The first item of business is to show that the compact space K is a good fit for the
measure ν. We want to check that we’re not looking at a measure on some small
part of the space, like a point mass.
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Proposition 4.1. Let (K,B, ν, T ) be a topological model for the abstract measure-
preserving system (X,U), constructed as above. Then K is faithful; i.e. supp ν =
K.

Proof. Suppose
∫
K
|f | dν = 0. Then

0 =

∫
X

Φ|f | dµ =

∫
X

|Φf | dµ,

so Φf = 0 as an element in the C*-algebra A ⊆ L∞. Since Φ is injective, we must
have f = 0 in C(K).

Now suppose for contradiction that there is some x /∈ supp ν. Then, as supp ν is
closed, by Urysohn’s lemma, there exists a continuous function g : K → [0, 1] such
that g|supp ν = 0 and g(x) = 1. This yields

0 =

∫
supp ν

|g| dν =

∫
K

|g| dν,

which implies that g = 0.

Furthermore, the existence of a T -invariant probability measure with full support
implies that the continuous map T does not shrink the space K at all.

Corollary 4.1. Let (K,B, ν, T ) be a topological model for the abstract measure-
preserving system (X,U), constructed as above. Then K is surjective; i.e. T (K) =
K.

Proof. We know that T (K) ⊆ K, so to show that T (K) ⊇ K, we will leverage the
fact that supp ν = K. The support is the intersection of all closed subsets of K of
full measure, so we need only show that T (K) is closed with ν(T (K)) = 1. We have

ν(T (K)) = ν(T−1(T (K))) = ν(K) = 1,

so T (K) has full measure. And since K is compact, T (K) is compact by the conti-
nuity of T . A compact subset of a Hausdorff space is closed, so T (K) is closed.

Remark 4.2. This same argument shows in general that T (supp ν) = supp ν, even
when supp ν is not all of K.

To cap off this discussion of properties relating to ν providing information on the
whole of the space K, we have the following general relationship between ergodicity
and its topological equivalent, minimality.
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Proposition 4.2. Suppose (K,B, ν, T ) is a uniquely ergodic topological measure-
preserving system with supp ν = T . Then K is topologically minimal; i.e. the only
nonempty, closed subset E ⊆ K with T (E) ⊆ E is K itself.

Proof. Suppose E ⊆ K is closed with T (E) ⊆ E. Then, letting x ∈ E, consider
νn = 1

n

∑n−1
k=0 δTkx, as in the Krylov-Bogoliubov theorem. Any weak*-limit of a

subsequence of the νn is T -invariant, so it must be ν. But supp νn ⊆ E for all n,
which implies that supp ν ⊆ E. That is, K ⊆ E, which means E = K.

4.2.2 Existence of metric models

We may also ask whether the compact space K is a metric space or not, i.e. whether
there exists a metric model for (X,U). Fortunately, there is precisely a character-
ization of this!

Proposition 4.3. An abstract measure-preserving system (X,U) admits a metric
model (K,B, ν, T ) if and only if L1(X) is separable.

The idea is to leverage our characterization of which compact, Hausdorff spaces
are metrizable: K is metrizable iff C(K) is separable.

Proof. ( =⇒ ): Suppose K is a metric space. Then C(K) is separable, so we get
that L1(K) is separable (since uniform convergence implies L1 convergence). The
isometric isomorphism Φ : L1(K) → L1(X) thus provides a countable dense subset
of L1(X).

( ⇐= ): If L1(X) is separable, then so is L∞(X) (with the L1 norm), as we can
replace any countable dense subset of L1(X) by a countable dense subset in L∞(X)
using the density of L∞(X) in L1(X). Moreover, we can assume that the countable
subset D ⊆ L∞(X) contains 1X . By adding Uf, U2f, . . . for each f ∈ D (still keeping
D countable) and by adding in conjugates, we can assume that D is closed under U
and under conjugation. Now let A be the closure of D in L∞ (with respect to the ‖·‖∞
topology). Then A is a C∗-subalgebra of L∞(X) which is separable in the L1(X)
topology (as L∞ convergence implies L1 convergence) and dense in L1(X). Our
construction of topological models gives an isometric isomorphism Φ : C(K) → A,
and we can use Φ−1 on D to obtain a countable, dense subset of C(K). Thus, C(K)
is separable, so K is metrizable.
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4.3 Stone models and ergodicity

4.3.1 Example: Stone models

In this section, we will provide a general class of examples of topological models and
investigate their properties. This discussion has a few purposes:

1. To serve as an illustration of how properties of topological models can be de-
pendent on the choice of C*-subalgebra A ⊆ L∞(X).

2. To show that it is often insufficient to just use A = L∞(X).

3. To show that the machinery we set up to construct topological models remains
relevant in determining their properties.

Definition 4.2. The Stone model (or Stone representation9) of the abstract-
measure preserving system (X,U) is the topological model (K,B, ν, T ) constructed
using the C*-algebra A = L∞(X).

In the case of the Stone model, the compact space K may not look very similar
at all to the original space X, even if X did originally have a topology. In particular,
the space K is disconnected in a strong sense.

Proposition 4.4. Let (K,B, ν, T ) be the Stone model of (X,U). Then for every
open V ⊆ K, V is open.

The idea here is that C(K) is originally derived from L∞(X), so the boundary of
a set is not detected by the space; for example, if X = [0, 1] with Lebesgue measure,
1[0,1] = 1(0,1) in L∞(X).

Proof. Consider the set S = {g ∈ C(K) : g ≥ 1V }. We claim that this set has
a continuous greatest lower bound f , in the sense that f ≤ g for all g ∈ S and if
h ≤ g for all g ∈ S, then h ≤ f . To see this, apply Φ to the set S to obtain a
subset ΦS ⊆ L∞(X) which is lower bounded by Φ1V (since Φ preserves order by the
positivity condition). The pointwise infimum g∗ of the functions in ΦS is in L∞(X),
so we may define f := Φ−1(g∗).

We now claim that f = 1V . If x ∈ V and g ∈ S, then g(x) ≥ 1. So by the
construction of f , f(x) ≥ 1. Using Urysohn’s lemma, we can construct a g which is

9The terminology comes from the fact that K (or at least something homeomorphic to it) can
be alternately constructed from the Stone representation theorem applied to the measure algebra
BX/ ∼.
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1 on an neighborhood of x, so we must have f(x) = 1. Continuity of f then gives
f |V = 1. On the other hand, if x /∈ V , then by Urysohn’s’ lemma, we can find a
continuous function g : K → [0, 1] with g|V = 1 and g(x) = 0. Then g ∈ S, so
f(x) ≤ g(x) = 0. Thus, f |K\V = 0, and we hence obtain f = 1V , as claimed.

Now, since f1V is continuous by construction, V = f−1(C \ {0}) is open.

Given the disconnected structure of K, you might wonder what the measure
ν looks like. Since we know that ν has full support, ν assigns full measure to
topologically full subsets of K. The following proposition says that conversely, ν
assigns zero measure precisely to the topologically sparse subsets of K.

Proposition 4.5. Let (K,B, ν, T ) be the Stone model of (X,U). Then ν(E) = 0 if
and only if E is nowhere dense in K.

Proof. ( ⇐= ): Suppose E is nowhere dense in K, and consider the set S = {1V :
V ⊇ E is open and closed} (note that S ⊆ C(K)). As in the previous proposition,
by passing to L∞(X) via Φ, S has a greatest lower bound f ∈ C(K). As 0 is a lower
bound for S, f ≥ 0; we will show that f = 0.

Suppose for contradiction that there is some x ∈ K with f(x) 6= 0; then it is
nonzero on an open set containing x by continuity. And since E is nowhere dense,
this open set intersects K \ E nontrivially; in other words, there is some y ∈ K \ E
with f(y) 6= 0. We now have two closed sets, {y} and E which are disjoint; since
compact, Hausdorff spaces are normal, there exist disjoint open sets V1 ⊇ {x} and
V2 ⊇ E. So by the previous proposition, V2 is closed, open, and does not contain y.
This gives 1V2 ∈ S, so f ≤ 1V2

; however, this contradicts f(y) 6= 0.
We now have f = 0, so by the regularity of the measure ν (by the construction

in the Riesz-Markov-Kakutani representation theorem),

ν(E) ≤ ν(E)

≤ inf{ν(V ) : E ⊆ V,E is open and closed}

= inf
1V ∈S

∫
K

1V dν

=

∫
K

f dν

= 0.

( =⇒ ): Suppose E ⊆ K is a ν-null set. Since the measure ν is regular, ν(E) =
inf{ν(V ) : V ⊇ E,U open}. So there exists a sequence Vn of open sets containing E
such that limn→∞ ν(Vn) = ν(E) = 0. The boundaries ∂Vn are nowhere dense in K,
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so they are ν-null. This means that limn→∞ ν(Vn) = ν(E) = 0, so if we consider the
closed set C :=

⋂
n V n, we get ν(C) ≤ limn→∞ ν(Vn) = 0 with C ⊇ E. Now recall

that since supp ν = K, no open set has measure 0. So C cannot contain any open
set and thus has empty interior. So E ⊆ C has empty interior; that is, E is nowhere
dense.

4.3.2 When does ergodicity carry over to the topological model?

Now that we’ve established what the Stone model looks like, we can ask the question
of whether ergodicity of the original measure-preserving system X carries over to its
topological model (and in particular to the Stone model). If X is ergodic, in this
setting, asking for unique ergodicity of the topological becomes not so different from
asking for mean ergodicity, which is usually considered a weak version of ergodicity.
The following terminology comes from the result of von Neumann’s mean ergodic
theorem (see e.g. Section 2.5 of [EW13] or Chapter 10 of [EFHN15]).

Definition 4.3. An operator U : Lp(X) → Lp(X) with p ∈ [1,∞] (or defined on a
subspace) is mean ergodic if limn→∞

1
n

∑n−1
k=0 U

nf exists for all f in the domain.

Theorem 4.2. Suppose (X,BX , µ, S) is an ergodic measure-preserving system, and
let (K,B, ν, T ) be a topological model of (X,US), associated to the C*-subalgebra
A ⊆ L∞(X). Then (K,T ) is uniquely ergodic if and only if US is mean ergodic on
A.

Here’s how we prove this theorem. Like with ergodicity, there is a characterization
of unique ergodicity in terms of the Koopman operator:

Lemma 4.1. A topological dynamical system (K,T ) is uniquely ergodic if and only
if UT is mean ergodic and {f ∈ C(K) : UTf = f} = C1K.

For the proof of this lemma, see e.g. Theorem 10.6 in [EFHN15]. Now let’s prove
the theorem:

Proof. Ergodicity of X implies that {f ∈ A : USf = f} = C1X . Applying Φ−1 gives
{g ∈ C(K) : UTg = g} = C1K . Similarly, Φ relates mean ergodicity of US on A to
mean ergodicity of UT on C(K). Now apply the lemma.

Remark 4.3. Since we also know that supp ν = K, unique ergodicity implies mini-
mality of the underlying topological system, as well.
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Remark 4.4. If we drop the ergodicity assumption on X, the equivalence still holds,
as long as we tack on the condition {f ∈ A : USf = f} = C1X to the mean ergodicity
of US. In particular, it a priori may be possible to get ergodicity on the topological
model without having it on X.

Now here is the disheartening part: It turns out that even mean ergodicity is too
much to ask for in the case of the Stone model. The following result tells us that UT
is rarely mean ergodic on C(K).

Proposition 4.6. Suppose (X,BX , µ, S) is an ergodic measure-preserving system.
If US is mean ergodic on A = L∞(X), then L∞(X) is finite-dimensional.

Proof. By the previous theorem, the Stone model (K,B, ν, T ) is uniquely ergodic
and hence topologically minimal. If x ∈ K, then the orbit Ox = {x, Tx, T 2x, . . . }
satisfies T (Ox) = T (Ox) ⊆ Ox, so Ox is closed and T -invariant. By minimality,
Ox = K. Then Ox is not nowhere dense, so ν(Ox) > 0. Since Ox is countable, there
must be some n such that ν({T nx}) > 0. But then for any k > 0,

ν({T n+kx}) = ν(T−k{T n+kx}) ≥ ν({T nx}),

which implies thatOx is finite (lest we exceed total probability 1 otherwise). However,
this orbit is dense in K, so K = Ox must only be comprised of finitely many points.
And since C(K) ∼= L∞(X) as C*-algebras, L∞(X) must be finite-dimensional.

Thus, the Stone model is too rigid to be of general use. So the game becomes
finding a large C*-subalgebra A ⊆ L∞ which produces a topological model with nice
properties for the given situation.

Fortunately, the following theorem provides a solution to this problem when the
original measure-preserving system is invertible.

Theorem 4.3 (Jewett-Krieger). Let (X,BX , µ, S) be an invertible, ergodic, measure-
preserving system on a standard probability space. Then (X,US) has a topological
model (K,B, ν, T ) which is uniquely ergodic (and hence topologically minimal).

You can find a proof in Section 15.8 of [Gla03].
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